625 research outputs found

    Measurements of the Cerenkov light emitted by a TeO2 crystal

    Full text link
    Bolometers have proven to be good instruments to search for rare processes because of their excellent energy resolution and their extremely low intrinsic background. In this kind of detectors, the capability of discriminating alpha particles from electrons represents an important aspect for the background reduction. One possibility for obtaining such a discrimination is provided by the detection of the Cerenkov light which, at the low energies of the natural radioactivity, is only emitted by electrons. In this paper, the results of the analysis of the light emitted by a TeO2 crystal at room temperature when transversed by a cosmic ray are reported. Light is promptly emitted after the particle crossing and a clear evidence of its directionality is also found. These results represent a strong indication that Cerenkov light is the main, if not even the only, component of the light signal in a TeO2 crystal. They open the possibility to make large improvements in the performance of experiments based on this kind of material

    Simulation-based design study for the passive shielding of the COSINUS dark matter experiment

    Get PDF
    The COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) experiment aims at the detection of dark matter-induced recoils in sodium iodide (NaI) crystals operated as scintillating cryogenic calorimeters. The detection of both scintillation light and phonons allows performing an event-by-event signal to background discrimination, thus enhancing the sensitivity of the experiment. The choice of using NaI crystals is motivated by the goal of probing the long-standing DAMA/LIBRA results using the same target material. The construction of the experimental facility is foreseen to start by 2021 at the INFN Gran Sasso National Laboratory (LNGS) in Italy. It consists of a cryostat housing the target crystals shielded from the external radioactivity by a water tank acting, at the same time, as an active veto against cosmic ray-induced events. Taking into account both environmental radioactivity and intrinsic contamination of materials used for cryostat, shielding and infrastructure, we performed a careful background budget estimation. The goal is to evaluate the number of events that could mimic or interfere with signal detection while optimising the geometry of the experimental setup. In this paper we present the results of the detailed Monte Carlo simulations we performed, together with the final design of the setup that minimises the residual amount of background particles reaching the detector volume.Peer reviewe

    Measurements and optimization of the light yield of a TeO2_2 crystal

    Full text link
    Bolometers have proven to be good instruments to search for rare processes because of their excellent energy resolution and their extremely low intrinsic background. In this kind of detectors, the capability of discriminating alpha particles from electrons represents an important aspect for the background reduction. One possibility for obtaining such a discrimination is provided by the detection of the Cherenkov light which, at the low energies of the natural radioactivity, is only emitted by electrons. This paper describes the method developed to evaluate the amount of light produced by a crystal of TeO2_2 when hit by a 511 keV photon. The experimental measurements and the results of a detailed simulation of the crystal and the readout system are shown and compared. A light yield of about 52 Cherenkov photons per deposited MeV was measured. The effect of wrapping the crystal with a PTFE layer, with the aim of maximizing the light collection, is also presented

    TeO2_2 bolometers with Cherenkov signal tagging: towards next-generation neutrinoless double beta decay experiments

    Get PDF
    CUORE, an array of 988 TeO2_2 bolometers, is about to be one of the most sensitive experiments searching for neutrinoless double-beta decay. Its sensitivity could be further improved by removing the background from α\alpha radioactivity. A few years ago it has been pointed out that the signal from β\betas can be tagged by detecting the emitted Cherenkov light, which is not produced by α\alphas. In this paper we confirm this possibility. For the first time we measured the Cherenkov light emitted by a CUORE crystal, and found it to be 100 eV at the QQ-value of the decay. To completely reject the α\alpha background, we compute that one needs light detectors with baseline noise below 20 eV RMS, a value which is 3-4 times smaller than the average noise of the bolometric light detectors we are using. We point out that an improved light detector technology must be developed to obtain TeO2_2 bolometric experiments able to probe the inverted hierarchy of neutrino masses.Comment: 5 pages, 4 figures. Added referee correction

    First bolometric measurement of the two neutrino double beta decay of 100^{100}Mo with a ZnMoO4_4 crystals array

    Full text link
    The large statistics collected during the operation of a ZnMoO4_4 array, for a total exposure of 1.3 kg \cdot day of 100^{100}Mo, allowed the first bolometric observation of the two neutrino double beta decay of 100^{100}Mo. The observed spectrum of each crystal was reconstructed taking into account the different background contributions due to environmental radioactivity and internal contamination. The analysis of coincidences between the crystals allowed the assignment of constraints to the intensity of the different background sources, resulting in a reconstruction of the measured spectrum down to an energy of \sim300 keV. The half-life extracted from the data is T1/22ν_{1/2}^{2\nu}= [7.15 ±\pm 0.37 (stat) ±\pm 0.66 (syst)] \cdot 1018^{18} y.Comment: 6 pages, 2 figure, Accepted for publication in Journal of Physics G: Nuclear and Particle Physic

    The SABRE project and the SABRE Proof-of-Principle

    Get PDF
    SABRE aims to directly measure the annual modulation of the dark matter interaction rate with NaI(Tl) crystals. A modulation compatible with the standard hypothesis, in which our Galaxy is immersed in a dark matter halo, has been measured by the DAMA experiment in the same target material. Other direct detection experiments, using different target materials, seem to exclude the interpretation of such modulation in the simplest scenario of WIMP-nucleon elastic scattering. The SABRE experiment aims to carry out an independent search with sufficient sensitivity to confirm or refute the DAMA claim. The goal of the SABRE experiment is to achieve the lowest background rate for a NaI(Tl) experiment (order of 0.1 cpd/kg/keV(ee) in the energy region of interest for dark matter). This challenging goal could be achievable by operating high-purity crystals inside a liquid scintillator veto for active background rejection. In addition, twin detectors will be located in the northern and southern hemispheres to identify possible contributions to the modulation from seasonal or site-related effects. The SABRE project includes an initial Proof-of-Principle phase at LNGS (Italy), to assess the radio-purity of the crystals and the efficiency of the liquid scintillator veto. This paper describes the general concept of SABRE and the expected sensitivity to WIMP annual modulation.The SABRE program is supported by funding from INFN (Italy), NSF (USA), and ARC (Australia Grants: LE170100162, LE16010080, DP170101675, LP150100075). F. Froborg has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 703650. We acknowledge the generous hospitality and constant support of the Laboratori Nazionali del Gran Sasso (Italy)

    Response of a TeO_2 bolometer to alpha particles

    Full text link
    TeO2TeO_2 crystals are used as bolometers in experiments searching for Double Beta Decay without emission of neutrinos. One of the most important issues in this extremely delicate kind of experiments is the characterization of the background. The knowledge of the response to α\alpha particles in the energy range where the signal is expected is therefore a must. In this paper we report the results on the response function of a TeO2TeO_2 bolometer to α\alpha's emitted by 147^{147}Sm dissolved in the crystal at the growth phase. A Quenching Factor of (1.0076±0.00051.0076\pm 0.0005) is found, independent of the temperature in the investigated range. The energy resolution on α\alpha peaks shows a standard calorimeter energy dependence: σ  [keV]=(0.56±0.02)(0.010±0.002)E[keV]\sigma\; [\rm{keV}] = (0.56 \pm 0.02) \oplus (0.010 \pm 0.002)\sqrt{E[\rm{keV}]} . Signal pulses show no difference between α\alpha and βγ\beta\gamma particle

    Discrimination of alpha and beta/gamma interactions in a TeO2_2 bolometer

    Full text link
    TeO2_2 crystals have proven to be superb bolometers for the search of neutrinoless double beta decay in many respects. However, if used alone, they do not exhibit any feature that allows to discriminate an alpha energy deposit from a beta/gamma one. This fact limits their ability to reject the background due to natural radioactivity and eventually affects the sensitivity of the search. In this paper we show the results of a TeO2_2 crystal where, in coincidence with its bolometric heat signal, also the luminescence light escaping the crystal is recorded. The results show that we are able to measure the light produced by beta/gamma particles, which can be explained as due to Cerenkov emission. No light is detected from alpha particles, allowing the rejection of this background source.Comment: 5 pages, 6 figure

    Performance of a large TeO2 crystal as a cryogenic bolometer in searching for neutrinoless double beta decay

    Full text link
    Bolometers are ideal devices in the search for neutrinoless Double Beta Decay. Enlarging the mass of individual detectors would simplify the construction of a large experiment, but would also decrease the background per unit mass induced by alpha-emitters located close to the surfaces and background arising from external and internal gamma's. We present the very promising results obtained with a 2.13 kg TeO2 crystal. This bolometer, cooled down to a temperature of 10.5 mK in a dilution refrigerator located deep underground in the Gran Sasso National Laboratories, represents the largest thermal detector ever operated. The detector exhibited an energy resolution spanning a range from 3.9 keV (at 145 keV) to 7.8 keV (at the 2615 gamma-line of 208Tl) FWHM. We discuss the decrease in the background per unit mass that can be achieved increasing the mass of a bolometer.Comment: 6 pages, 6 figure
    corecore